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Self-assembly and structural ordering is a complex, emergent property of liquids that is intimately related to macro-
scopic and microscopic phenomenon.1 A foremost objective of modern research in liquid state physics is the develop-
ment and optimization of computer simulations that can accurately predict the behavior of materials from the atomic
scale for any arbitrary system, and we expect such models to closely agree with experimental measurements of macro-
scopic behavior (PV diagrams, heat capacity, etc) and microscopic behavior (pair correlation functions, diffusion coef-
ficients, etc).2 Common quantum simulation methods employ empirical correction schemes on top of classical simula-
tions to better fit a particular macro/microscopic observable. This can lead optimized pair potentials to severely over fit
to one particular thermodynamic state.3 This has lead researchers to pursue simulation methods that can better represent
the physics of the liquid state without the need for empirical correction. A rigorous way of doing this is through the use
of quantum mechanics and the path integral.4 The aim of this review is to convince newcomers of the power of path
integral simulations as well as reveal the often overlooked theoretical background of quantum simulation.

I. INTRODUCTION

The history of path integrals starts with a small comment
in Dirac’s notes about how the probability amplitude can cor-
respond to the classical action.5 Richard Feynman saw this
and was able to flesh out the details and entirely reformulate
quantum mechanics. A proof of the equivalence between the
Feynman approach and the historical one can be shown by
taking the probability amplitude of a particle ⟨x′, t|x0, t0⟩ =
⟨x′, t0|U(t)|x0, t0⟩ and then splitting the time evolution opera-
tor between them into P parts.5 Contemporaneously to Feyn-
man’s derivation of the path integral there was a revolution
within the world of liquid state physics. Nicholas Metropolis
had taken the first steps towards simulation the microscopic
physics of liquids on computers.6 With his invention of the
Metropolis Monte Carlo algorithm, it became possible to ob-
serve the exact motions of particles which obey the rules of
the Lennard-Jones pair potential. Via the ergodic theory of
Von Neumann it became possible to reformulate these Monte
Carlo simulations through the lens of dynamics rather than
the inherent probabilistic methods.7 The culmination of com-
putational and theoretical development birthed a new field of
study. Researchers in the fields of physics, biology, and chem-
istry ran classical molecular dynamic simulations to observe
the effects of simulation parameters on PV diagrams, heat ca-
pacity, pair correlation functions, diffusion coefficients, etc.2

A growing concern within these fields that the pair poten-
tials found by empirical algorithmic methods lack transfer-
ability as well as ability to effectively approximate third body
effects.3 The inexactness of empirical corrections combined
with a clear lack of uncertainty quantification of these clas-
sical algorithms has ushered researchers to fall back on ab
initio techniques.8 An obvious method that should give min-
imal error with respect to experimental results is solving the
time-dependent Schrödinger equation for the nuclei and elec-
trons simultaneously. However, this method fails to be com-
putationally feasible for non-trivial systems. Any system in-
volving more than three particles requires an iterative solu-
tion. When considering the usual particle count in MD sim-
ulations being on the order of 1000 or higher, ab initio tech-

niques within the Schrödinger picture of quantum mechanics
seemed out of reach. At this point researchers took Feyn-
man’s advice "Any good theoretical physicist knows 6 or 7
theoretical representations for exactly the same physics, and
he keeps them in his head to hopefully give him different
ideas for guessing".9 Rather then caring about the exact dy-
namics of a many body system, researchers utilized the power
of the statistical ensemble similarly to the original ideas of
Metropolis that founded liquid simulation. It has long been
known that evaluating the probability amplitude of a parti-
cle that starts and ends in the same position at an imaginary
time recovers the elements of the statistical ensemble opera-
tor ρ(x0,x0;β ). More precisely ⟨x0, t0|U(t)|x0, t0⟩ evaluated at
t =−iτ such that τ = β h̄ is equal to ρ(x0,x0;β ).10 This equiv-
alence was the clue scientists needed to rewrite ρ(x0,x0;β ) in
it’s path integral form similarly to the probability amplitude
⟨x0, t0|U(t)|x0, t0⟩. In doing this, researchers performed ex-
actly the same feat as Feynman and totally reformulated quan-
tum statistical mechanics as well as quantum simulation.11

Often the details of the path integral formalism are over-
looked when learning quantum or statistical mechanics; in
fact, most universities lack a course on quantum simulations
of liquids despite their growing importance in a broad range
of scientific disciplines. Hence, there is a clear need for an
educational document that outlines the theoretical and nu-
merical implementation of path integral molecular dynamics.
One such detail that is specifically addressed in this paper
is the trotter factorization, which is foundational to the the-
ory of path integrals since the rules of scalars and finite sys-
tems cannot be applied when dealing with infinite dimensional
operators.12 This review includes a detailed derivation of the
isomorphism between the path integral formalism and a clas-
sical system of ring polymers as well as provides resources to
run path integral simulations.

II. THEORETICAL DERIVATION

When it comes to statistical mechanics, the partition func-
tion is everything. It allows a connection between micro-
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scopic statistical mechanics and the macroscopic thermody-
namic measurements. Consider how the average energy re-
lates to the partition function ⟨E⟩ = − ∂Q

∂β
.13 Multiplying the

average energy by the number of particles gives the internal
energy function. Taking particular derivatives of this function
will result in any possible thermodynamic observable. This
implies an important corollary: if two systems share a parti-
tion function, they are equivalent in a thermodynamic sense.
Considering this fact in tandem with the seemingly mystical
connection between the partition function and the propagator,
lets observe the consequences of writing the partition function
as a path integral. Exploring this aspect within the propagator
can give a whole new view on quantum mechanics; similarly,
one can gain new insight into quantum statistical mechanics
in the same manner.

To start, consider the quantum mechanical partition func-
tion for a single particle in an NVT ensemble.13 The particle is
located within a box of length L with periodic boundary con-
ditions. This choice of boundary conditions is the most com-
mon choice for both simulation and condensed matter physics
problems. Periodic boundary conditions allow the results to
better represent macroscopic systems sizes without actually
having a large simulation.

Q1V T = Tr(exp(−βH)) (1)

The trace of an operator can be written in any basis.10

Strategically write Q in terms of the position basis {r}.

Tr(exp(−βH)) =
∫

dr⟨r|exp(−βH)|r⟩ (2)

Where the integration is over all co-ordinates of space.
Such as x,y,z in Cartesian or r,θ ,φ in spherical. Consider
just the operator within the integral. Performing a trotter fac-
torization similarly to the regular path integral results in the
following quantity:

exp(−βH)≈ exp(−βH/P)P (3)

Where the approximation becomes an equality in the limit
limP→∞. Note that this formula is presented without mathe-
matical proof. A proof of this theorem can be seen in Trotters
original paper from 1959, or within the texts from Schulman
in 1981, and from Tuckerman in 2010.121415 Putting this fac-
torization within the trace operation results in:

∫
dr⟨r|exp(−βH/P)P|r⟩ (4)

Consider the identity written in the position basis:

1 =
∫

dr |r⟩⟨r| (5)

Inserting this identity between each of the terms being mul-
tiplied results in:

∫
dr1

∫
dr2...

∫
drP ⟨r1|exp(−βH/P)|r2⟩ ...⟨rP|exp(−βH/P)|r1⟩

(6)

Notice that each term being multiplied is simply a term
within the density matrix ρ(ra,rb;β/P) where the tempera-
ture has been raised by a factor of P.2 Expanding one of the
terms Hamiltonian in terms of the potential energy and kinetic
energy contributions gives:

ρ(ra,rb;β/P) = ⟨ra|exp(−βH/P)|rb⟩ (7)

= ⟨ra|exp(−β (T+V)/P)|rb⟩ (8)

= ⟨ra|exp(−β (T/P)exp(−βV/P)|rb⟩ (9)

By inserting the identity between the two exponentials we
can simplify the expression further. Then via the eigenvalue
eigenvector relation between the potential energy and the po-
sition basis we can extract one of the terms.

=
∫

drc ⟨ra|exp(−β (T/P)|rc⟩⟨rc|exp(−βV/P)|rb⟩ (10)

= exp(−βV(rb)/P)
∫

drc ⟨ra|exp(−β (T/P)|rc⟩⟨rc|rb⟩
(11)

=⇒ ρ(ra,rb;β/P) = ⟨ra|exp(−βT/P)|rb⟩exp(−βV(rb)/P)
(12)

Because we are taking the limit that P → ∞ this is a true
equality and not an approximation.12 The kinetic energy term
just corresponds to the non normalized free particle density
matrix at a temperature multiplied by a factor of P.

⟨ra|exp(−βT/P)|rb⟩ ∝ ρfree(ra,rb;β/P) (13)

In order to continue we have to calculate the free particle
density matrix. This is most easily done by inserting the mo-
mentum space identity.

⟨ra|exp(−βT/P)|rb⟩= ∑
k
⟨ra|exp(−βT/P)|k⟩⟨k|rb⟩ (14)

= ∑
k
⟨ra|k⟩⟨k|rb⟩exp

(
− β h̄2k2

2Pm

)
(15)

=

(
1

2π

)3

∑
k

exp(ik(ra − rb))exp
(
− β h̄2k2

2Pm

)
(16)

At this point we can approximate the summation using an
integral. The summation is used within this problem simply
because there is a countable set of allowed k space values.16

This implies a k space density. Multiplying by the k space
density over itself produces an equivalent expression.

∑
k

F(k) =
1

∆k ∑
k

F(k)∆k (17)
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The density of k space values is simply 1 allowed k value
every

( 2π

L

)3
=

( 8π3

V

)
. Taking the limit as the system size in-

creases makes ∆k approach an infinitesimal dk.16

∑
k

F(k)≈
(

V
8π3

)∫
dkF(k) (18)

Replacing the actual function for F(k) gives:

(
1

2π

)3

∑
k

exp(ik(ra − rb))exp
(
− β h̄2k2

2Pm

)
(19)

=

(
1

2π

)3( V
8π3

)∫
dkexp(ik(ra − rb))exp

(
− β h̄2k2

2Pm

)
(20)

The k vector is a quantity that contains the set of three val-
ues {kx,ky,kz}. Utilizing this we can easily rewrite the expres-
sion in terms of a summation over x, y, and z. A summation
inside an exponential will result in a product outside.

=
∫

Π j=x,y,zdk j exp
(

ik j(ra
j − rb

j)−
β h̄2k2

j

2Pm

)
(21)

All directions will integrate to the same value due to k space
being isotropic. So we can just cube the integral of one dimen-
sions. Resulting in the final expression:

=

(
1

2π

)3(8π3

V

)(∫
dkx exp

(
ikx(ra

x − rb
x)−

β h̄2k2
x

2Pm

))3

(22)

We can complete the square within the exponential to make
the integral more obvious. Choose B = β h̄2

Pm as well as k0 =

i(ra
x − rb

x)/B. This implies the integral can be reduced to:

=⇒=
∫

dxexp
(
− B

2

(
−2k0kx + k2

x + k2
0 − k2

0

))
(23)

=
∫

dkx exp
(
− B

2

(
(k− k0)

2 − k2
0

))
(24)

= exp
(

Bk2
0

2

)∫
dkx exp

(
− B

2
(k− k0)

2
)

(25)

= exp
(

Bk2
0

2

)√
2π

B
(26)

Plugging this back into the original expression yields the
following:

=
V

8π3
1

8π3

(
2π

B

)3/2

exp
(

3Bk2
0

2

)
(27)

=
V

8π3

(
Pm

2πβ h̄2

)3/2

exp
(
− Pm(ra − rb)2

2β h̄2

)
(28)

Notice the term exponentiated to the 3/2 in the prefactor. It
is exactly the same as an integrated quasi-classical momentum
distribution.

QFree =
∫

dp
1

8π3h̄3 exp
(
− βp2

2Pm

)
=

(
Pm

2πβ h̄2

)3/2

(29)

This implies that the element of ⟨ra|T/P|rb⟩ is proportional
to:

⟨ra|exp(−βT/P)|rb⟩ (30)

∝

(
Pm

2πβ h̄2

)3/2

exp
(
− Pm(ra − rb)2

2β h̄2

)
= QFreeQHarmonic

(31)

Combining this with the potential energy portion within the
full partition function gives:

Q1V T = QRP (32)

=
P

∏
i=1

∫
dri

(
Pm

2πβ h̄2

)3/2

exp
(
− Pm(ri − ri+1)2

2β h̄2

)
exp(−βV(ri)/P)

(33)

This is simply the partition function for a ring polymer with
P beads. The potential energy function acts exactly the same
as a classical one. It takes in just the co-ordinates of one bead
at a time as indicated by the superscript on the r. This means
that the beads with different labels do not interact via the clas-
sical potential. Expanding this one particle partition function
into an N particle partition function generally follows a sim-
ilar process. The only extra work involved is ensuring that
indistinguishability is accounted for. The N particle one looks
like the following:2

QNV T =
1

(NP)!

(
Pm

2πβ h̄2

)3NP/2

(34)

×
N

∏
n=1

P

∏
i=1

∫
dRi

n exp
(
− Pm(Ri

n −Ri+1
n )2

2β h̄2

)
exp(−βV(Ri

n)/P)

(35)

A diagrammatic interpretation of the interactions between
particles is shown in figure 1.
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FIG. 1. A system of 2 molecules split into 6 subsystems. Notice
the springlike interaction between beads of different labels and the
regular potential energy interaction between those of the same label.

Thus we have shown that the partition function for a sys-
tem of ring polymers is mathematically equivalent to that of a
quantum mechanical system of particles. Therefore, by simu-
lating a liquid ensemble of ring polymers with a particular po-
tential energy function, we can achieve a simulated quantum
mechanical system of particles. When calculating thermody-
namic observables, just average over the P systems being si-
multaneously simulated.

III. IMPLEMENTATION

Rather than utilize this paper to explain each line of code
required to run a path integral simulation, this section will
outline the main places and packages to learn this aspect. Cre-
ation of an entire simulation package from scratch is tedious
and un-important for simple application of the tool. The in-
dustry standard is to make modifications of a few key tools
rather than personalized code.

The most commonly used tool for numerical PIMD simula-
tions is the combination of I-PI: A universal force engine with
LAMMPS (Large-scale Atomic/Molecular Massively Paral-
lel Simulator).1718 I-Pi is an easy to use python interface that
is designed to interact with LAMMPS and other ab initio
force field calculators efficiently and effectively. I-Pi acts on
a server client basis. Such that I-Pi acts as a manager of nu-
clei positions and outsources the force calculation to its em-
ployee LAMMPS. While there is no formal textbook or paper
that outlines the exact details of running a simulation with I-
Pi, there is a very good series of Jupyter notebooks that out-
line the installation and python used to run I-Pi simulations.
The tutorials can be found on I-Pi’s GitHub page.19 Specif-
ically, these tutorials go over how to install I-Pi, LAMMPS
and CP2K. Details on running simulations of water and other
materials are provided as well.

In order to verify that the reader fully understands how
to utilize this software, I recommend attempting to simulate
something that is not within the tutorial files directly. For

example, creating an original LAMMPS data file containing
216 water molecules. Then utilizing the TIP4P potential en-
ergy function provided within day 2 of the tutorial.20 Then
running multiple simulations at differing bead counts observ-
ing the effect on the bond angle and bond length of the water
molecules. For comparison, the results of my execution of this
exercise are shown in figures 2 and 3.

FIG. 2. A distribution of observed bond angles in an NVT simulation
of water molecules. T = 300 K, Box Length = 36 Å, N = 216

FIG. 3. A distribution of observed bond distances in an NVT simu-
lation of water molecules. T = 300 K, Box Length = 36 Å, N = 216

IV. FURTHER RESEARCH

While the implementation of PIMD presented here does
accurately predict the behavior of some materials from the
atomic to macroscopic scale, it does not tell the entire story
of quantum mechanics. Thus, it remains to show the details
of electronic structure calculation and direct implementation
of the fundamental properties of bosons and fermions. Fur-
ther research on implementation of bosonic mechanics can
be found in the paper by Hirshberg, Rizzi, and (as usual)
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Parrinello.21 Briefly, they show that through a recursive algo-
rithm that doesn’t explore all bosonic permutations, they can
effectively model thermodynamic averages present in bosonic
systems. Their results have been shown to approximate 2D
systems with only an O(N3) penalty W.R.T the number of
particles. Verification of these results has been shown by com-
parison to numerical diagonalization of the many body Hamil-
tonian. For inclusion of electronic structure calculation see
the work done by the Quantum Espresso group.22 The inclu-
sion of Quantum Espresso with I-Pi’s quantum nuclear effects
is quite simple, however the theoretical background is quite
complicated. Quantum Espresso is just one tool of many, and
the field of electronic structure calculation is growing with the
development of density function theory. A proper description
of this aspect of PIMD would take numerous publications and
deserves its own review.

PIMD is not restricted to generic calculations of gaseous
and liquid state thermodynamic properties. In 2018 Ramirez
and Herrero were able to combine the electronic structure
tight binding Hamiltonian and PIMD quantum nuclear effects
within one simulation scheme.23 Their results had good agree-
ment with spectroscopic ellipsometry and with perturbative
theoretical results. PIMD has also been a key player in the
verification of the isotopologue assumption commonly used
within structure potential refinement schemes. A qualitative
verification of PIMD’s effects on structure can be seen in the
bonding distribution plots shown in figures 2 and 3. A de-
cisive experimental and computational study into the isotope
effects on water’s structure was done in 2012 by Zeidler and
others.24 They were able to verify that both deuterated and hy-
drogenated water both gave the same structure results, which
was only possible through the use of PIMD. Thereby solidify-
ing PIMD’s position as a tool for scientific discovery.

Lastly, there is a clear need to mitigate the prohibitive the
time complexity bounds in path integral molecular dynamics.
There is an innate and unavoidable O(P) increase in time com-
plexity when simulating P replicates of the original system.2

It can require up to 24 hours of computation on highly par-
allel machines to simulate a systems of organic molecules
classically. If researchers ever hope to get the same results
with a PIMD solution they will be heavily hindered by the
O(P) growth. It is also clear that purely empirical correc-
tions of classical simulations are dependent on the thermody-
namic state to which they were optimized.325 Therefore, there
is an urgent need to find theoretical quantum coarse grain-
ing solutions. Recently, Scott Shell has released a landmark
paper on multi-scale modeling, in which he utilized the rela-
tive entropy between two phase space distributions to quan-
tify coarse grained molecular potentials.26 Going from atoms
to molecules is quite similar to the transition from a quan-
tum particle to a classical one, this implies the existence of
a algorithm to transition between quantum potential energy
functions and their approximate classical counterparts. If im-
plemented successfully, PIMD simulations may be able to be
run with only an O(1) increase in complexity compared to
classical ones.

V. CONCLUSIONS

This study has outlined the key aspects of deriving the
path integral representation of molecular dynamics. By
splitting the Hamiltonian into P pieces and utilizing several
eigenvector-eigenvalue relations, one can prove the partition
function of a system of ring polymers is isomorphic to the
quantum partition function.2411 The ability to model quan-
tum nuclear effects in systems of many particles has lead
to PIMD’s widespread adoption in biology, chemistry, and
physics. Each of these fields has been able to tailor the simu-
lations to exactly their needs. For example, the physics scien-
tific community has successfully extended PIMD to systems
of bosonic fluids, fermionic fluids, and crystalline solids.21

However, PIMD is far from a perfect tool. The time com-
plexity is limiting for researchers studying complex systems
at macroscopic length and time scales8. Thus, there is an ur-
gent need to develop theoretically backed methods that can
perform accurate quantum simulations with an O(1) complex-
ity penalty. Lastly, the mystical nature of this approximation
has yet to be explained. The underlying model connections
between classical and quantum statistical mechanics are nu-
merous and should not be limited to PIMD. By exploiting
these connections, scientists may discover new perspectives
on modern physics.
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