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ABSTRACT

Gaining a mechanistic understanding of the role that catalysts play in chemical processes is essen-
tial for enhancing their efficiency, rate, and recyclability. Yet, there exists a notable challenge in
completely characterizing a reaction using experimental data alone. This challenge has spurred
the development of computational methods designed not only to replicate existing experimental
results but also to provide deeper insights that go beyond what can be achieved through purely
experimental means. Electronic structure theory and specifically density functional theory (DFT) aim
to achieve this through the characterization of potential energy surfaces. With access to the surface, a
computational chemist can run optimization procedures to discover energy minima and saddle points.
These points are paramount as they characterize the path chemical reactions take. This paper aims to
review the basic theory, catalytic applications, and an example calculation to give new chemists and
chemical engineers a resource to break into electronic structure theory.

Keywords Density Functional Theory - Catalysis - Reaction Pathway Discovery - Electronic Properties of Catalytic
Materials

1 Introduction

As we strive for more sustainable and efficient chemical reactors, understanding the underlying mechanisms of the
catalysts they use becomes primary. In this pursuit, conventional methods of characterization are commonplace.
Through the utilization of methods such as Fourier transform infrared spectroscopy (FTIR) [1]], X-ray scattering [2],
and various electron microscopes [3]] researchers can peer into the atomic scale of catalytic materials. While these
are valuable, they do little to shed light on the reaction mechanisms themselves. In order to effectively understand
a catalyst, access to the angstrom-scale dynamics as a reaction proceeds is necessary. With the advent of powerful
graphics processing units [4] and cluster super computers, computational quantum chemistry methods have emerged as
invaluable tools for unraveling complex reaction pathways at the atomic and molecular levels [5].

The most prolific of these tools is density functional theory (DFT). DFT is rooted in the principles of electronic structure
and has gained prominence in catalysis as a powerful technique for characterizing catalytic processes [6]. The aim of
this paper is to inform new researchers on all the tools required to make novel research contributions in catalysis using
DFT. Why might a researcher hope to learn DFT? Given enough computational resources, DFT can model almost any
observable while having top tier accuracy. As an example, FTIR contains vital information on the vibrational modes
of a material. By analyzing the outputted energy surfaces, researchers have shown a clear link between energy wells
and FTIR frequency modes [7]]. X-ray scattering and electron microscopes can show the equilibrium geometries of
a catalyst [8]], however the same information can be found by analyzing stable points in a DFT energy surface. To
list a few more achievable outputs from a DFT calculation, DFT can: obtain excited states found in UV/VIS spectra,
reproduce NMR spectra, CD spectra [9], and polarizability [[10]. DFT can discover reaction barrier heights, suggest
reaction pathways [10], obtain reaction rates, and reproduce thermodynamic properties [[11][12].

The forthcoming structure will be as follows, first we will explore the basics of electron structure theory and the
Born-Oppenheimer approximation. This will then be followed by an explanation of the Hohenberg-Kohn theorems
that are fundamental to DFT. With these out of the way, we can then embark on the specific details of running DFT
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calculations using the Kohn-Sham method. With the method established, reaction pathway discovery can then be
elucidated. Finally, the narrative culminates with a discussion of practical applications in catalysis, where the theoretical
insights are translated into real-world contexts, showcasing the power of DFT for understanding catalytic systems.

2 Theory

2.1 Electronic Structure Theory and the Born-Oppenheimer Approximation

The fundamental equation that electron structure theory aims to solve is the non-relativistic time independent Schrodinger
equation. This equation is an Eigenfunction Eigenvalue relation. It is meant to relate the wave function of a many-body
system of nuclei and electrons to its corresponding energy.
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Each argument in the wave function corresponds to each particles x, y, z position and their spin w. With the form of the
wave function established we can consider what the Hamiltonian is in atomic units:
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Each term corresponds to the kinetic energy of the nuclei, the kinetic energy of the electrons, the electron-nuclei
attraction, the electron-electron repulsion, and the nuclei-nuclei repulsion respectively. This equation can be further
simplified by claiming that the nuclei move so much slower than the electrons, they might as well be frozen. This
assumption is not that unrealistic. Even with only one proton, the nucleus is almost 2 million times heavier than and
electron and correspondingly their characteristic timescales. This is called the Born-Oppenheimer (BO) approximation
[13]]. This gives an electronic Hamiltonian as well as a "clamped" nucleus Schrodinger equation. We also can reduce
notation by considering electron co-ordinates as r and nucleus co-ordinates as
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It is traditional to include the nuclear repulsion in this Hamiltonian, it allows later calculations to be done more easily.
We can also note that the inclusion of this term makes no overall difference to the motion of the electrons. The nuclei
are immobile, therefore they just contribute a constant to the Hamiltonian. This simply shifts the Eigenvalues up/down,
while making no change to the Eigenfunctions. We can write the original v in terms of a summation of ¢gjec.:

G, R) = Ypree.k(r; R)xk(R) (6)
k

It can then by shown by inserting @ into the Schrodinger equation that we attain the following relation for xy (R)ﬂ

Nucl. Nucl.
1 1
(=2 3 ¥ 2 gy IV + B ()R = Bxa(®)
A
We can then define two different terms:
!This means writing r is the same as writing 1, y1, 21, w1, ..., TN, YN, 2N, wn Where every x, y, z is an electron. Similarly for
the nuclei.

This can be considered a nuclei wave-function
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This is the nuclear Schrodinger equation. This type of setup is essentially treating Fgie.. as a potential energy surface
for the nuclei to move around on. The extra gradient term in the potential energy is often neglected as it is usually
inconsequential to the overall calculation. A quantification of its significance can be found in reference [14]. This
establishes the fundamental problem electronic structure theory aims to solve. For ease of reference the electronic sub
problem is repeated.

Heee (15 R)Vgec. (1; R) = Fgree. (R)Ygiee. (r; R) (11)

To solve the electronic Schrodinger equation, scientists have developed numerous methods. To name a few: Hartree
Fock basis set methods [|15]], semi-empirical Hartree Fock approximations [16], couple cluster theory [[17]], many body
perturbation theory [17]], and the main focus of this paper density functional theory|[|/18].

2.2 Kohn Sham Density Functional Theory

Density functional theory starts with two theorems proposed by Hoenberg and Kohn in 1964 [18]. They showed that
the ground state properties of a many body electron system depend only on the electron density p(z,y, z). By treating
the electrons as a density rather than a collection of particles we can solve the problem in a similar manner to classical
fluid mechanics approach. Effectively, this reduces the problem of finding a wave function with 3N electron positions
r as arguments to finding a function with only 3 in certain cases. Their ground breaking work also showed that the
correct ground state energy is the one that minimizes the energy functional of the electron density Egec [p(z,y, 2)].
This hints at a method of discovering the ground state energy, and therefore the potential energy surface that nuclei
move upon. DFT has improved upon the established Hartree Fock theory through the inclusion of electron exchange
and correlation effects, as well as allowing the possibility for algorithmic speed ups.

Supposing we knew the function p(z, y, z), we can then compute it’s energy through the energy functional. By then
taking a variational derivative with respect to the density, we can then update our beliefs and iterate until we find the
optimal density. The weakness of the DFT method is that we don’t know the exact energy functional. Through our
knowledge of the electronic Hamiltonian, we can make guesses as to its form. It will contain an electron kinetic energy
(although the exact form of this functional is not clear), a Coulomb repulsion term, and a Coulomb attraction term to
the nuclei. These terms do not directly contain the repulsive effects due to the Pauli exclusion principle [[19]], nor does it
contain the anti symmetry (exchange effects) of the electron wave function. Additionally, there is correlation effects
that we must consider.

An initial attempt to resolve the lack of a clear optimization method was found by Kohn and Sham in 1965 [20]. Taking
inspiration from Hartree Fock theory [15]], they assume that the wave function can be written in terms of a Slater
determinant [21]]. To define the density, then consequentially the kinetic energy we first must understand the basic ideas
behind Hartree Fock. In order to simplify the problem, Hartree proposed writing the electronic wave function as a
product of "orbitals" ¢ 15 ]

Yup(r1, T2, ...15) = O1(r1)da(re)...on(ry) (12)

Immediately, one can see that the Hartree product approach does not work. Electrons are supposed to be mathematically
indistinguishable particles. Due to electrons being Fermions, when we exchange two different electron arguments we
should expect the wave function to stay the same apart from a sign change. To convince you this, consider a two particle
case:

3Noting that the implicit parametric dependence on the nuclei positions is omitted
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Then exchanging the arguments gives:

Yup(re, 1) = ¢1(r2)d2(r1) (14)
This does not change signs, and the overall wave function changes as ¢; is not necessarily the same as ¢,. To resolve

this, one can force 1) to have anti-symmetry do this by construction.
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For an N electron system the Slater determinant [21] looks like:
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Where |ij - - - k) is a commonly used shorthand. With our wave function, we can write down the spacial electron density
[20].

N
i=1

This is simply the sum of the probabilities that the electron in orbital ¢ is located at x, y, z. In general, we won’t know
the exact form of the orbitals. This is what we will be refining with our energy functional. Often researches tend to
write a given orbital in the following form:

K
$i(2,9,2) = Y Cuidu(,y,2) (18)
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This is simply a linear combination of basis functions ¢, (z, y, z). This is essentially exactly the same as fitting arbitrary
functions to some data, such as a neural network or a linear regression model. The key difference is that we wont be
fitting data, rather we will be enforcing self-consistency [20] and minimization through the energy functional. The
energy functional uses the density in the following way

Exiec[p] = Tlp] + Een[p] + Eeelp] (19)

The terms of this functional are the electron kinetic energy, the electron-nuclei attraction, and the electron-electron
repulsion. The easiest to compute is the electron-nuclei interaction. This will just be Coulomb’s law integrated over the
density:

- B Nucl. ZAp(r) . 0
eN[p]l = — EA: Ra—1| r (20)

“The constant nuclei energy is missing from this expression, it makes no change to the Eigenfunctions so we don’t mind skipping
it.
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As stated previously, the kinetic energy is not known exactly. However, by constructing our density in terms of Hartree
Fock theory we can use their form as a good estimate. This portion is defined as T’s.

—_
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Similarly, the potential as a known form. The Coulombic repulsion.

/ / d dr’ (22)
This then gives the total energy functional as:
EElec.[P] =Ts [p] + EeN[P] + J[p] + Eacc{ﬂ] (23)

Where the last term is the exchange correlation functional. This is defined as the difference between what we dont know
and what we do know:

Exelp] = (T1p] = Tslpl) + (Eeelpl — Jp]) (24)

This is a correction term, where it contains any kinetic energy missed by the Hartree Fock picture as well as any extra
potential energy contributions from exchange and correlation. Each piece of the energy functional is exactly computable
except for the exchange correlation functional. Due to the exchange correlation functional being unknown, we require
some different approximation schemes. This is the crux of any DFT calculation based in Kohn and Sham’s scheme.
Combining all of these terms into one equation, we get the following:

Nucl.

7z
Z/|Rip—r|d +// d dr’ + Ey.[p] (25)

A specific exchange-correlation functional is the local density approximation (LDA). This is done by splitting the
exchange and the correlation effects. Dirac and Slater formulated this exchange piece by modeling a uniform electron
gas in their earlier works [22].
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Then the correlation term can be found via a Monte Carlo fitting procedure. With the entire functional established. How
do we fully solve for the orbitals as well as the ground state energy to attain our potential energy surface? We can take a
functional derivative of the energy functional and set it to zero.

0 Egec. [P]

Fa 0 (28)

However, this procedure does not enforce the orbitals to to be orthogonal. We can ensure that it will by creating a
Lagrangian with the included Lagrange multiplier.

Llp] = Bgec.[p] — iE( / (1) s (x)dr — 1) (29)
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Interestingly enough it can be shown that minimizing this with respect to p is the same as minimizing with respect to
each of the orbitals on their own. Taking the functional derivative of the Lagrangian with respect to ¢} (r) gives:

Nucl. SE [p]
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Noting that the exchange correlation portion of the previous equation is a functional of the density and not the orbital.
We can use to chain rule to show that this is just:
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What this now means is we can define a new pseudo-potential v,,.:

Vge(r) = (32)

For the local density approximation this becomes:

Vae(r) = —cup(r)F + ve(r) (33)

Finally we arrive at a new equation for the orbitals that is solvable.
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This looks like N time independent Schrodinger equations for a set of non-interacting electron orbitals in an effective
potential. The key point is that we can now solve a fictitious non-interacting system but we can attain the same ground
state energy for an interacting one! Once we obtain the correct orbitals, to send that information upwards to the nuclei
simply compute the energy from the original functional E[p].

There are many more functional to consider. The LDA only considers the values of the functional at a given point in
space. A clear extension would be to include the gradients within the expression. There are also the hybrid functionals
which really jump started the methods popularity as a whole.

2.3 Potential Energy Surfaces and Geometry Optimization

The main application of DFT to catalysis is in geometry optimization [23] [24] [25] [26] [27] [28]. Given a geometry, it
is possible to compute the energy due to electronic effects by solving the set of equations defined by equation [34] This
then implies we can create a 3N dimensional surface, where the inputs are the atomic nucleus co-ordinates and the
output is their corresponding electric structure ground state. This surface is defined by equation [I0} There are multiple
observable quantities that we can compute with this surface. However, in catalysis the primary use case is to perform
geometry optimization and discover possible reaction pathways [29]] [30].

A potential energy surface (PES) need not have curvature as we have defined it. As an example we can consider one
molecule where we apply only a translation and a rotation, not changing the relative distances between atoms. This type
of motion along the PES would cause no change in energy, therefore we can remove this type of motion from the PES
and rewrite it in terms of only the types of motions that effect the energy. However, we can cause a change in energy by
changing the distance between two atoms that we believe are bonded. In 2017 Tamukong et. al. published a study using
DFT-in-DFT embedding theory as well as the presented Kohn Sham DFT to compute the energy as a function of bond
length in multiple materials [25]. Relative energy of the dissociation of LiF is presented in figure
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Figure 1: Relative energy dissociation curves of LiF obtained with the embedding-with-external-orbital-orthogonality
DFT-in-DFT (green) and KS-DFT calculations (black). The green curve completely obscures the KS-DFT curve -
Tamukong et. al.

Rather than just breaking a bond, we can cause more complex changes in our geometry. Within catalysis, mapping out
the structure/energy of the reactants and the products as a reaction proceeds is of primary importance. In 1999 Niu
and Hall from Texas A&M discussed the nuances of this process in a review on the applications to transition metal
complexes in catalysis [8]. A key step in this procedure is the identification of equilibrium state minima, transition state
saddle points, as well as high order energy maxima saddle points. Chemical reactions tends to follow paths between
these points. Of course a reaction proceeds statistically, following a stochastic process type structure. However, we
can model the most statistically significant path by considering those with the smallest free energy barriers. We can
define each of these points mathematically. Consider the input/output relationship between the PES and the nuclear
co-ordinates.

Epree. : RPN 5 R (35)

This is a vector equation. This means if we differentiate the energy with respect to each atomic co-ordinate we get a
vector. When the derivative of this vector is zero, that implies we are at a stationary point.

dEglec. 4 of Nucl # of Nucl
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Every stationary point can be further classified by computing the second derivative, the Hessian matrix H.

H: R# of Nucl. — R# of Nucl. % R# of Nucl. (3 8)

If H has all positive eigenvalues, the point in question is a minima/equilibrium geometry. These minima correspond to
initial stable reactant states, or final stable product states. The magnitude determines exactly how stable the minima is.
Note as well, this implies they are a minima in every dimension. If H has one negative eigenvalue, then the state R
is a transition state between reactants and products. These are called transition states because because they must be
crossed as a set of nuclei move from products to reactants. These states are minima in every dimension except one. If
there is a multiple negative eigenvalues, this is called a high order saddle point and are generally of minimal chemical
significance. These are minima in every dimension, aside from those corresponding to negative eigenvalues. One can
consider a path between these points as the reaction co-ordinate. A cartoonish presentation of a PES with one transition
state and two equilibrium geometries can be seen in figure
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Figure 2: Cartoonish representation of an exothermic chemical reaction. The red curve is an uncatalyzed chemical
reaction, the blue is catalyzed by an enzyme. Figure taken from the reaction co-ordinate Wikipedia page.

Alongside the eigenvalues of the Hessian matrix, these can communicate a tons of information about which components
are important in a reaction. By scaling the eigenvectors and animating how the geometry changes, one can visualize
exactly which atoms are important for a reaction. This allows us to quantify which steps a catalyst is contributing
to, or if it contributing at all. This all depends on finding these transition states. Searching for transition states is
generally more difficult than searching for equilibrium geometries. Researchers resolve this by choosing informed
starting geometries as well as tailored algorithms such as graph-based methods [31]], permutationally invariant reaction
discovery [32]], as well as numerous automatic data driven methods [33].

3 DFT In Catalysis

Although the primary use case of DFT is geometry optimization and reaction pathways, there are many possible
alternative use cases. It would be near impossible to go through every specific method employed. Therefore, this section
aims to outline a few specific examples to give a feel for the breadth of the DFT methodology in catalyst development.

3.1 A Study on the Coking of Ni Catalysts

As a illustrative example, in 2002 Bengaard and coworkers used geometry optimization to quantify the difference
between Ni(211) step and Ni(111) sites in the steam reforming reaction.

CH4 + H,O = CO + 3H, 39

They did so using the generalize gradient approximation (GGA) energy functional. The GGA functional builds upon
the presented LDA functional by including derivative information. To model the Ni surface, Bengaard used a periodic
repeating supercell. Using a fully periodic slab can make the calculations of the energy easier in comparison to having
it be only periodic in 2 dimensions. Note that the slabs must be sufficiently far from each other that the electron density
goes to zero between the slabs. By taking possible components in the reaction and optimizing their geometry in the
presence of the different Ni sites they arrived a set of energies for each step in the reaction. Their results are presented
in figure 3]
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Figure 3: Energies for the species on Ni(211) and Ni(111). All energies are relative to CH4 and H20O in the gas phase
and calculated using the results for the individual species. - Bengaard

Their results convey two main messages. The Ni(211) steps are more reactive than the Ni(111) surface sites. Notably
the rate determining step, activating methane. Similarly, the atomic carbon is much more stable on step sites than
surface sites. This implies that the coking process is more likely to nucleate on step sites. This hints at a potential
method to increase the recyclability of the catalyst. If you can strategically engineer the step sites, then the nucleation is
more unlikely to occur.

Relative Energies (kJ/mol) per Carbon Atom on the Two Surfaces,
and the Edge Energy for Graphene on Ni(111)

Ni(211) atomic C Ni(111)
1C:2Ni  1C:1INi Graphene
edge edge Monolayer edge
atoms atom Atomic C  graphene energy
E (kJ/mol) 0 43 97 -33 172

Figure 4: A table of energies to decipher coking on Ni catalysts.

A specific consideration they looked into was the formation of graphene monolayers, and graphite islands. Through
DFT they showed the graphene layers are even more stable than the individual atomic carbon adsorbed to the step site.
This explains the carbon whisker and coking observed in actual industrial processes. It happens because it is vastly
more energetically favorable than proceeding through the reaction. This process is likely to nucleate on the step sites
due to the lower energies computed there. However, they also found that as the step sites get covered by carbon, the
resulting energy increases. This implies that the initial; formation of the layer is unfavorable, but once a critical mass of
carbons is reached it becomes a graphene monolayer which is vastly more stable. This means, if we can prevent that
critical mass from forming then the bulk of the coking process can be prevented. In order to estimate the critical mass,
energy computations of the free carbon, step bound carbon, carbon edge, and graphene monolayer must be calculated.
Bengaard’s calculations are presented in table d] Using these they estimated the critical mass of carbons as ~ 80 atoms.
This corresponds to a step size of ~ 25 angstroms. This gives a goal for instrumentalists, if they are able to engineer the
facets of their catalyst to be smaller than ~ 25 angstroms then graphite is less likely to form. Experimental observations
of weight of carbon versus process time do in fact show an initiation period with an increasing rate of carbon formation
before the coking rate stagnates [34] [35]]. Bengaard claims that this could be due to the initial unfavorability of the
coking process.
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Figure 5: The graphene island used in the model is semihexagonal and attached to a step edge. - Bengaard

3.2 Discovering Novel Ammonia Synthesis Reaction Pathways with DFT

In 2005 Honkala and coworkers performed an ab-initio study on ammonia synthesis [26]]. They do so utilizing density
functional theory. They then developed a more accurate kinetic model that includes the catalytic reaction over a
packed bed of a high surface area nanoparticle catalyst that takes into account the DFT computations they performed.
Specifically they considered a ruthenium catalyst with support and compared it with high agreement to industrially
relevant processes while only considering the particle size distribution as an experimental input. To reiterate, they used
the size distribution to create a specific DFT geometry distribution which can then be used to estimate pathways and
rates.The initial part of the characterization process was to model the potential energy surface as a function of the
molecular geometry. This showed the expected result that the step sites are much more reactive than the terrace sites.
This also resulted in a reaction pathway. The resulting pathway can be seen in in figure[6]
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Figure 6: The calculated potential energy diagram for NH3 synthesis from N2 and H2 over close-packed (001) and
stepped Ru surfaces (20). A * denotes an empty site and X* an adsorbed species. The configuration of the transition
states (TS) for N5 dissociation over the terrace and step sites is shown in the insets. - Honkala
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Combining their energies with a harmonic transition state theory they were able to show that the N2 dissociation is the
rate limiting step (RDS) under realistic operating conditions. Then they calculated the rate constant for the RDS with
the Arrhenius form based on the energy computed with the DFT energy surface. This means that the rate would change
as a function of the energy for a specific nuclei geometry. Taking these results they used a similar method to the generic
heterogeneous site coverage analysis to attain an overall rate law in terms of partial pressures. However they modified
the probability of the N2 adsorption. To do so they utilized a grand canonical Monte Carlo simulation.

They analyzed roughly 1000 different particles using TEM to attain a size distribution. Rather than direct counting
they calculated the surface energy to attain the fraction of sites as a function of particle size and then used the Wulff
construction to estimate particle shape [36]. They specifically neglected the support and commented that their analysis
on this step was very crude, however they were still in good agreement with the experimental results. There is most
likely uncertainty in their estimated completeness of the Wulff polyhedra. They believe that there may be more partly
filled layers, but their estimate seems like a lower bound. They then showed that the rate was 3 to 20 times smaller than
the experimental rate. However, considering the lack of empirical input their results were promising. They comment on
the lack of exact agreement by noting that an misprediction of 0.25 eV of energy can cause a 148 factor difference in the
rate of an elementary reaction step at 600 K. To study this effect they then mixed two different energy surfaces derived
from different functions in their DFT calculations to estimate the rate and showed that the overall rate was insensitive to
the choice of functional mixing. This implies that misprediction of the energy for a specific elementary may not be
controlling their faulty predictions. Rather, it is controlled by the faulty estimation of the number of active sites or a
faulty description of bonded interactions in their monte carlo simulations. By decreasing the stability of adsorbed H
relative to the NHX species by 0.06 eV they were able to attain a match to experiments at all temperatures and flows,
showing that initial faulty predictions were not due to their DFT calculations. Overall, this outlines a procedure for
attaining mechanistic understanding of catalysis using DFT and presents a promising future for the field.

3.3 Molecular Dynamics: ReaxFF

A clear use case is the propagation of the potential energy surface into molecular dynamics simulations. Molecular
dynamics (MD) is one of the most adopted methods in physical chemistry. However MD has some key issues that
can prevent it’s ability to match experimental data due to faulty PES inputs. The most common form of MD is driven
by two body potential energy surfaces. These two body energy surfaces are also commonly fit to one experimental
observable with a lack of care for all others. This causes an overfitting trend in most MD simulations. To resolve this,
there have been multiple key developments. Rather than going through them all, the ReaxFF [11]][12] bond order force
field developed by Goddard is only presented for brevity. Both of these methods are empirically fit to DFT calculations
rather than experimental datum. Due to DFT’s high accuracy when compared to most experimental observations, the
expectation is that an approximate DFT calculation through ReaxFF potentials will be just as accurate. This section
aims to outline the basics of these methods so researchers can apply them to their catalytic systems. Then a specific
calculation will be presented dealing with homogeneous catalysis using ReaxFF.

ReaxFF acts similarly to a two body potential energy surface by taking into account the pairwise distance between
nuclei to compute the energy. This opposes the paradigm of DFT, in DFT they take into account not only the distances
but the absolute position of every atom. This informs the calculation about three body angular and n-body effects. To
achieve a similar ideal, ReaxFF also extends upon the pairwise distance calculations by including bond order as a direct
input. With the inputs to the force field established, ReaxFF simply chooses a functional form and empirically fits
multiple constants within it to reproduce DFT data. An example geometry optimization for ethan using both energetic
methods is presented in figure

Figure 7: Effects of shortening of the C-C bond length in ethane to 1.0 A on the relaxed C-H bond lengths as calculated
by DFT and ReaxFF. Equilibrium C-C and C-H bond lengths are in italics and brackets. - C. T. van Duin

Researchers can then compute newtons equations of motion on the PES to resolve the dynamics of the classical nuclei.
In principle, this can be done by DFT. However, it is much to slow to do this type of calculation on systems larger than

11
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20 atoms. By then observing the time required for the system to fully react, we can obtain reaction rates for a catalyst.
Similarly, by using theories from statistical mechanics researchers can estimate any thermodynamic observable for a
catalyst system.

Researchers Feng, Jiang, and Luo, from University College London performed a molecular dynamics study on platinum-
decorated functionalized graphene sheet catalyzed methane oxidation using the ReaxFF force field [[37]. They built
four different periodic systems with different sizes but the same density. Their base system contained 50 CH4 and
100 O2 molecules. They then duplicated it with three different catalysts, a Functionalized Graphene Sheet, two
Tetrahedral Pt Clusters and a Pt-decorated Functionalized Graphene Sheet. They adopted a canonical NVT ensemble
with a Nose-Hoover thermostat. To get the initial configuration into an energetically favorable state they performed a
conjugate gradient algorithm. An initial equilibration procedure was done for 100 ps with a 0.1 fs timestep. Similarly to
previous research [38] they turned off the C—O and H-O bond interactions in the force field to prevent reactions during
equilibration. They disabled reactions with the catalysts during equilibration as well. Equilibration of the functionalized
graphene sheets were performed separately to maintain their crystal structure. Once these steps were done, they ran a
data collection period for 4000 ps for ramped temperature simulations and 1000 ps for constant temperature. They
noted that performing the reaction at a higher temperature can aid in the computational slowdown caused by the smaller
atomic motion at low temperatures. A 0.2 bond order cutoff is used for analysis of species formation. This allows for
more sensitivity to different reaction pathways. Overall they averaged over three runs of each simulation type for their
results. Each initial configuration had unique geometries so as to not get statistically dependent results. The ramping
occurred from 300 to 3000 kelvin at 0.9 K per ps. The constant temperature ran at 3000 kelvin. The fastest reaction
rate was observed for the platinum-decorated functionalized graphene sheet. Whereas the functionalized graphene
sheet was slightly faster for the first 3000 ps of the ramped simulation but the platinum alone sped up significantly
afterwards. Overall, from best to worst they ranked: platinum-decorated functionalized graphene sheet, platinum on its
own, graphene sheet, no catalyst.They then presented a graphical reaction pathway obtained from their simulations. The
platinum-decorated functionalized graphene sheet combination increased catalytic activity by lowering the activation
energy by 73%. In their reaction mechanisms, the edge of the graphene sheet seemed to oxidize more at the edge. Their
pathways indicated the methane oxidation with their catalyst is initiated by cleaving the C—H bond for the production of
hydroxyl. Most importantly, the most active sites get consumed quickly and the platinum-decorated functionalized
graphene sheet quickly reduces to the graphene sheet. This research shows that the ReaxFF DFT method can be used to
engineer good catalysts and should be heavily utilized in characterization schemes.

4 Conclusions

This paper has highlighted the vital role that density functional theory plays in advancing our understanding of catalytic
processes. By employing DFT, researchers gain the ability to explore potential energy surfaces, pinpoint energy
minima and saddle points, and unravel the intricate pathways that chemical reactions traverse. The exploration of the
fundamentals of electronic structure theory, the Born-Oppenheimer approximation, the Hohenberg-Kohn theorems, and
the Kohn-Sham methodology has laid the groundwork for new research exploiting the intricacies of DFT. The three
illustrative calculations—scrutinizing coking on Ni surfaces, investigating ammonia synthesis reaction pathways, and
employing the ReaxFF force field for thermodynamic assessments—underscore the versatility of DFT in addressing a
spectrum of challenges in catalysis research. By bridging the theoretical and applied domains, DFT not only amplifies
our capacity to interpret experimental data but also steers the design of innovative catalysts that will lay the groundwork
for more efficient, effective, and recyclable catalysts.
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