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1 Purpose and Scope

This document serves as a standard operating procedure (SOP) for performing
Bayesian linear regression (BLR). The goals of this document are as follows:
users will be familiar with the mathematics and theory behind BLR, users will
be able to implement a simple example of BLR in python, and users will be able
to take this knowledge and extended it to their own personal modeling situa-
tions. In order to use this document successfully users will need to be familiar
with gradients and their minimization properties from calculus III. Along with
this, a basic understanding of statistics is required. Users are expected to under-
stand the properties of normal distributions and be able to find their mean and
variance. Lastly a basic understanding of Python and specifically the packages
Numpy and Matplotlib.

2 Materials

This section will cover the installations that are required before proceeding with
this SOP.

2.1 Python

To get started, ensure that Jupyter notebook with Python 3 is installed on the
machine. This can be easily verified by opening a terminal inside the Jupyter
notebook editor and typing ”python” and presing enter. Once the Jupyter
notebook versions are verified, create a new Python 3 notebook file and open it.

2.2 Imports

Please import the following packages inside the first cell of the notebook.

1. numpy

2. matplotlib.pyplot
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3. the matplotlib.pyplot figure class

Figure 1: The imports cell in Jupyter notebook

If these packages are not installed please refer to https://numpy.org/install/
for the Numpy installation, and refer to https://matplotlib.org/stable/users/installing/index.html
for the Matplotlib installation.

3 The Outline of the Problem

A common problem in modeling is learning how to choose the correct model pa-
rameters. Performing classic optimization can lead to over fitting. Bayesian in-
ference is intended to solve this issue. To put it technically, the goal of Bayesian
regression is to calculate the joint probability distribution of the models pa-
rameters given some experimental data. All while utilizing a prior probability
distribution that will serve as a regularizer.

At this point, readers may be asking themselves the question ”What is a
prior? And why do I need one to make a guess on the model parameters?” Prior
distributions arise from Bayes rule. Bayes rule is simply another way to write
the definition of conditional probability. Taking the definition of conditional
probability, Bayes rule can be derived as follows.

P (A ∩B) = P (B|A)P (A) (1)

This formula can be understood from the point of view of sets. Consider the
diagram.

Figure 2: A set theory diagram of the the probability space where two event
sets A and B overlap.
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This formula is encoding exactly what is happening in the diagram. Choose
a point inside A’s event space, then calculate A’s probability there. With the
point known then calculate B’s probability at that point. With both of these,
just combine the independent events with multiplication as dictated by the
axioms of probability. It is know that all the points inside B but not in A have
a probability of 0 from the view of A. It is also known that if a point is chosen
inside A and not in B, the probability from B’s view will be 0. This is exactly
extracting the middle section of the Venn diagram. This gives us the intuition
that P (A ∩B) can be written two ways.

P (A ∩B) = P (B ∩A) = P (A|B)P (B) (2)

This shows the following equivalence to be true.

P (B|A)P (A) = P (A|B)P (B) (3)

=⇒ P (B|A)P (A)

P (B)
= P (A|B) (4)

(5)

Each of these terms has a name. P (A) = ”Prior”, P (B|A) = ”Likelihood”, P (B) =
”Normalization Factor”, and P (A|B) = ”Posterior”. In English, the equation
says the prior times the likelihood will give the posterior up to a normalization
factor.

If the experimental data is chosen to be B then the quantity P (A|B) repre-
sents the probability of the model parameters A given the data B. The quantity
P (A) corresponds to the prior probability. It is required in this alternate def-
inition of conditional probability. Throughout this SOP the model in question
will be of the form

f(x) =

N∑
n=0

cnx
n (6)

Where the set {cn} is a set of constants that are determined by Bayesian
inference. We can prescribe a prior probability distribution on each of these
parameters. In other words, the set {cn} corresponds to the A within the
Bayes rule formula shown above, and the resulting outputs of f(x) make the set
corresponding to B in Bayes rule.

{cn} ⇐⇒ {P (cn)} (7)

These distributions are meant to encapsulate the information that is already
know about the model. Certain modeling situations require limitations on the
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parameters. Utilizing classical minimization of squared error has no way of
preventing unreasonable parameters. The use of a prior allows the user to
communicate to the optimizer these exact limitations. A physical situation
where a limitation is obvious could be when making an inference on a distance.
Distances are strictly positive quantities, but the optimizer simply can’t know
that unless it is told to un-weight those answers. With these prior distributions
in tandem with experimental data points Bayes rule can be utilized to make an
inference on the set {cn}. The conditional probability of the parameters can be
written as follows.

P ({cn}|yexp) ∝ P (yexp|{cn})
∏
n

P (cn) (8)

With this equation written, all that is left is to optimize its results to find
the best set of parameters. This SOP will outline the exact process of coding
such a result. Note the fact that the above expression is not written in vector
form, however it can be. In vector form it looks like the following.

P (cn|yexp) ∝ P (yexp|cn)P (cn) (9)

Where the bolded lowercase input implies a vector and the bolded uppercase
implies a matrix. Instead of a factored prior we now consider a joint distribution
as the prior. Note there is not a matrix written in the above equation but there
will be one later.

4 Generating the Data

Bayesian inference is meant to encapsulate experimental data’s error. This
means that this tutorials data must also have some error. This section will
serve as a method of generating synthetic data. The assumption taken within
this model is that the error ind pendent and identically distributed. Written as
a mathematical formula it looks like the following.

yexp = f(x) + ϵ (10)

ϵ ∼ N (0, σ) (11)

Where epsilon is a normal random variable.

4.1

First, create a Jupyter notebook cell and define a function named f with only
one input x. This will serve as the true function referenced in equation 6. For
this purposes of this SOP. Choose the true function to be
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f(x) = −0.3 + 0.5x (12)

Figure 3: The proper python implementation of the true function

With these values chosen as the constants c0 and c1, it will define a 2 dimen-
sional search space. For each value of c0 and c1 an appropriate weight will be
assigned based off the posterior equation given above. If the algorithm works,
then it should find a maximum probability at c0 = −0.3 and c1 = 0.5.

4.2

To simulate experimental data points, generate a column vector of x values
pulled from a uniform distribution in the range [−1, 1]. Then find the image of
these points by chugging each point through f(x).

Figure 4: How to use Numpy’s convenient probabilistic functions.

4.3

The data generated is exact. Experimental data has noise, to encapsulate this
feature add some Gaussian noise at each point with a mean of 0 and variance
0.2. An example of this can be seen in the following steps figure.

4.4

Run a 100 point linspace over the range [−1, 1] and evaluate its image under
f(x). Then plot both xgt vs yexp and X vs Y .
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Figure 5: How to add noise to the synthetic data along with an appropriate
visualization.

5 How to Create and Sample the Prior Distri-
bution

With the model and the data created, the actual optimization procedure can
be started. This section will outline how to create the function P (cn). Because
there is only two variables to make the inference on, only two prior distributions
are required. These prior distributions are meant to encapsulate the information
the user already knows about the inferred variables. This is done by making
the probability of unwanted answers to 0 or make them be quite small. Within
the use of this SOP the choice of prior will be a joint distribution between both
variables. The function for this joint dist. will be a multivariate normal. This
is due to the ease of calculation that the Gaussian form provides.

5.1

Create a python function that represents the formula seen below

P (x) =
1√

det |2πΣ|
exp(−0.5(x− µ)TΣ−1(x− µ)) (13)
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Importantly noting the use of bolded and capitalized symbols. An important
part of this step is allowing vector inputs as well as vector dot product to the
python function. Within python the dot product is done using the @ symbol.
Another important aspect is the use of the log-determinant rather than the
regular determinant. When using the regular one, floating point and singular
matrix errors can arise.

Figure 6: A vector input multivariate normal function in python

5.2

Now define the prior distributions mean and variance. As an example, say it is
known that the parameters that are to be inferred do not often stray far from
0. Implying the correct choice for the mean is [0, 0] and the variance as the
identity times 2. With them defined, create a function that will evaluate the
prior probability of a vector of cn.

5.3

Create a grid of points over the range -1 to 1 on both inputs. With this grid
evaluate the prior probability on each. Plot the results with a heat map.

Figure 7: How to implement and plot the prior
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5.4

Using the priors mean and variance, sample it using numpy’s multivariate nor-
mal sampling function. Make 20 draws and plot each one of them on the same
plot. At this point, It may be useful to create a function that takes in a set
{cn} as well as a vector of x values that returns their linear combination.

Figure 8: Samples from the prior dist.

Notice how some of these answers are close to the correct function. The
likelihood will serve as a way to narrow these answers even further.

6 How to Create The Likelihood and the Poste-
rior

This section will explain why the likelihood looks the way it does as well as
how to implement it within the code. This function will vary compared to the
prior. It needs to have the experimental data as well as the appropriate inputs
for each experimental data point. The role of this function is to evaluate the
probability that current model can produce the experimental data. A common
metric to grade this is the normal distribution. This will be a great choice
for the likelihood because the prior is also normal. It allows for an analytical
solution of the maximum probability.
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6.1

Most of the work has already been done with respect to the likelihood. All that
remains is choosing the variance parameter within the likelihood. For the use of
this tutorial, choose 1

25 times the identity as the variance. This choice reflects
the uncertainty in the observed data. In general it is not valid to simply choose
a variable here, however inferring it is beyond the scope of this SOP. For the
mean, simply set it as the experimental data. Then the input to this normal
distribution is the current function evaluations at each input of the experimental
data.

P (yexp|cn) = N (ΦT cn|yexp,β) (14)

β =
1

25
I (15)

At this point within the SOP it becomes useful to define the design matrix
Φ. Phi is just another way of writing the inputs of the model. Phi is a M by N
matrix where M corresponds to the number of terms in the model polynomial
and N is the number of inputs to the model. In other words, N is the number
of experimental data points. In our specific case Phi will be:

Φ =

[
1 1 . . . 1
x0 x1 . . . xn

]
(16)

Remembering that cn is a M by 1 matrix, allowing us to evaluate every
experimental data point with the expression ΦT cn which has shape N by 1.

Figure 9: Likelihood Function Implemented in Python

6.2

The last step is to create the posterior function. Considering the poster equa-
tion presented earlier in equation 9, notice how there is a proportionality symbol
rather than an equal sign. This is due to the difficult of calculating the nor-
malization factor. This is not an issue because the normalization factor is not a
function of the weights cn. Within python, please make another function with
inputs of experimental outputs, experimental inputs, as well as a set of weights.
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Figure 10: Posterior Function Implemented in Python

7 Derivation of Maximum Posterior Estimate

This section will be the most technical section of the SOP. It will involve vector
calculus on Gaussian forms. To start, note the fact that Gaussian forms always
have a quadratic inside the exponential. If given an exponential of a quadratic
form, it is always a Gaussian. This is helpful because of how the posterior is
defined. Due to the properties of exponentials, when the prior and posterior are
multiplied they will sum within the exponent. This implies that the posterior
will have a quadratic form within an exponential, meaning the posterior is also
Gaussian.

7.1

A preliminary example is required to prove some properties of quadratic forms
in the exponential. Consider the multivariate Gaussian form.

1√
det |2πΣ|

exp(−0.5(x− µ)TΣ−1(x− µ)) (17)

Expand the quadratic inside the exponential.

1√
det |2πΣ|

exp(−0.5(xTΣ−1x− 2xTΣ−1µ+Other terms independent from x)

(18)

Looking at the above equation its easy to see, the only thing that can sit
between x transpose and x is the sigma matrix. The same can be said for the
linear term after it. This allows for the identification of the mean and variance
of an exponential quadratic form.

7.2

The next few step will outline the derivation of the posterior. First write the
logarithm of the posterior as follows.

log(P (cn|yexp)) = log(P (cn)) + log(P (yexp|cn)) (19)

= log

(
1

Z

)
− 0.5(cn − µPrior)

TΣ−1
Prior(cn − µPrior)− 0.5(ΦT cn − yexp)

Tβ−1(ΦT cn − yexp)

(20)
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Where the last step is done by substituting the multivariate Gaussian for-
mula for each distribution. Z corresponds to the prefactor in front of the Gaus-
sians that is unnecessary to discuss as it does not depend on cn. Note the total
expression still corresponds to a scalar. If you are ever unsure doing vector
calculations, check the shape first.

7.3

Now simplify this equation into a Gaussian form with cn as the input.

= log

(
1

Z ′

)
− 0.5

(
cTnΣ

−1
Priorcn − 2cTnΣ

−1
PriorµPrior + cTnΦβ−1ΦT cn − 2cTnΦβ

−1yexp

)
(21)

= log

(
1

Z ′

)
− 0.5

(
cTn

(
Σ−1

Prior +Φβ−1ΦT

)
cn − 2cTn

(
Σ−1

PriorµPrior +Φβ−1yexp

))
(22)

Where any terms that are left out do not depend on cn and can be lumped into
Z’

7.4

Now the final step is using this form to identify the mean and variance of the
posterior. When considering the multivariate Gaussian form, the only possible
matrix that can sit between cTn and cn is the variance matrix. Allowing us to
make the definition:

Σ−1
Post. = Σ−1

Prior +Φβ−1ΦT (23)

With the uncertainty known, the mean can also be identified with the same
trick as follows:

µPost. = Σpost

(
Σ−1

PriorµPrior +Φβ−1yexp

)
(24)

Because the prior mean is 0 a simplification is possible.

µPost. = Σpost

(
Φβ−1yexp

)
(25)

Due to the properties of Gaussian forms, all we need to identify is the mean
and variance to know the whole distribution. Checking the shapes of these
quantities, the mean is a M by 1 and the uncertainty is an M by M. This is as
expected.
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8 Python Implementation of Maximum Poste-
rior Estimate

To calculate the posterior mean and and variance within python simply use the
formulas derived in the previous steps. Add a term that will indicate a subset
of the data points so you can view how the inference changes when considering
less vs more experimental data points.

8.1

Define an integer N that ranges from 1 to 20. Then create a column vector
of the first N experimental Y values. Then create a row vector of of their
inputted x values (usually should be a column vector as seen within the math
above, however matplotlib will get mad if an input a column is used rather
than a row). Then define the likelihoods inverse variance matrix. With that
completed, create the design matrix Phi. Then code the posterior mean and
variance formulas as derived above. Then print them to see how well we inferred
the parameters.

Figure 11: Posterior mean and and variance evaluation implemented in python

8.2

This is great and all but how does the actual probability distribution look? To
find out, first create a place to store the posterior function values similarly to
the prior evaluation done before. Then loop over every cn value and evaluate
the posterior using the function defined above. Then plot its heat map.
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Figure 12: Posterior heat map implemented in python

8.3

We can see how well our Bayesian inference is doing by sampling the posterior.
Do this similarly to the prior sampling but replace it with the posterior mean
and variance. Then plot the samples as similarly to prior sample plotting. This
time also plot the data points considering with a scatter plot.

Figure 13: Posterior Predictive Plot in python
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Try changing the N variable and re running the last 3 cells to see how the
number of data points effects the result.
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