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The first experimental evidence of quantum Drude oscillator behavior in liquids is uncovered using probabilistic ma-
chine learning-augmented iterative Boltzmann inversion applied to noble gas radial distribution functions. Furthermore,
classical force fields for noble gases are shown to be reduced to a single parameter through simple empirical relations
linked to atomic dipole polarizability. These findings highlight how neutron scattering data can inspire innovative force
field design and offer insight into interatomic forces to advance molecular simulations.

I. INTRODUCTION

Atomic organization, structure, and self-assembly are foun-
dational concepts in understanding and modeling the behavior
of liquids at the atomic scale1–3. Solvent structure is known
to have a large impact on the behavior of complex liquid
phase processes, ranging from protein folding dynamics4–6,
formation of lipid micelles in water7,8, to catalysis9 and ma-
terial separations10. Consequently, the need for molecular
models to accurately model liquid structure has increased
the significance of obtaining precise experimental measure-
ments to serve as benchmarks or optimization targets, ideally
through the gold-standard techniques of wide-angle X-ray and
neutron scattering. Scattering experiments probe interatomic
distances and interactions by detecting individual scattering
events over time, allowing for the sampling of atomic posi-
tions within the system at the same length scale as interatomic
forces. This capability makes scattering data extremely valu-
able for the training and refinement of force fields (FFs)11.

Within a classical liquid state theory paradigm, learning in-
teratomic forces from experimental scattering data directly -
the inverse problem in statistical mechanics - is a promising
approach to enforce structural behavior in a FF model. Of
existing inverse problem methods1,11–22, iterative Boltzmann
inversion (IBI) is one of the most widely used and easy-to-
implement techniques. In a nutshell, IBI refines pair potentials
based on their quality-of-fit to a target set of site-site partial ra-
dial distribution functions, gα,β (r) (e.g., the O-O correlation
in water). The algorithm proceeds iteratively until the target
structure is reproduced to a pre-specified degree of accuracy.

Although experiencing a renewed interest for training
coarse-grained FFs, IBI has its roots in a study on the unique-
ness of the pair interaction potential in relation to the pair
correlation functions from Henderson23. Based on this now
dubbed "Henderson’s inverse theorem", Wolfram Schommers
designed a variational method to extract pair potentials for
his studies of liquid gallium24, which would later evolve into
the numerical IBI type methods existing today. Applications
of Schommer’s algorithm range from neutron scattering anal-
ysis with empirical potential structure refinement25, coarse-

grained FF design26,27, to correcting structural predictions in
machine learning potentials28. Recently, more rigorous math-
ematical formulations of the problem have been explored to
try and elucidate fundamental properties of IBI within the
framework of functional analysis29–31.

Of course, IBI has well-documented limitations that restrict
its transferability to complex model systems and experiments.
For instance, it is generally observed that IBI potentials de-
pend on the chemical environment and thermodynamic state
of the training data32, prompting the general shift towards
multi-objective optimization over a range of thermodynamic
state points26. In the context of the theory from which these
algorithms arise, this state-dependence is not surprising. Ex-
plicitly, Henderson’s inverse theorem only guarantees unique-
ness of the pair potential for isotropic fluids with pairwise ad-
ditive interactions at fixed density and pressure30. The for-
mer condition is violated for pairwise additive two compo-
nent mixtures, while both conditions are generally violated
for molecular liquids. Another problem is that, unlike atom-
istic simulations in which the site-site partial radial distribu-
tion functions can be computed directly from a trajectory, the
experimental equivalent is not computable uniquely33. The
fact that applying IBI to experimental data already violates as-
sumptions of the theory, and that the target experimental data
is potentially an inaccurate representation of the true atomic
structure, leaves us in a difficult state-of-affairs for learning
potentials in a rigorous and reproducible way.

However, it is now possible to mitigate many of the above
challenges with the use of machine learning34. Specifically,
we recently proposed a probabilistic IBI algorithm, i.e., struc-
ture optimized potential refinement (SOPR), to extract trans-
ferable forces from experimentally derived RDFs for fluid
phase systems. The key advance that SOPR provides is a
Gaussian process regression (GPR) step on the refinement
equation aimed at mitigating numerical instability and overfit-
ting to uncertain experimental data. GPR enforces continuity,
differentiability, and can suppress spurious long-range poten-
tial oscillations. Conceptually, GPR takes the standard IBI al-
gorithm and embeds rigorous uncertainty quantification35 into
its interatomic potential prediction. Application of SOPR to
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neutron scattering data of noble gases (Ne, Ar, Kr, and Xe)
has reproduced both structural and thermophysical properties
along the vapor-liquid line with accuracy that matches or ex-
ceeds state-of-the-art classical force fields34.

The ability to compute accurate interaction potentials di-
rectly from scattering measurements opens the door to deeper
insights into interatomic forces in liquids. SOPR potentials,
serving as a two-body mean-field approximation of the quan-
tum many-body interactions that govern liquid behavior, over-
come the system size limitations of quantum models while
remaining fully nonparametric and flexible. The Bayesian na-
ture of the SOPR method also reduces model selection bias
and parametric uncertainty, offering an experimentally val-
idated method to quantify deviations from empirical func-
tional forms like Lennard-Jones and to assess the magnitude
of many-body effects against ab initio dimer potentials. More-
over, analyzing SOPR potentials across thermodynamic states
or atomic numbers can reveal valuable links between funda-
mental atomic properties and classical representations of in-
teratomic forces36.

The analysis of noble gases provides a compelling test case
for this approach. Noble gases largely satisfy the assumptions
of the Henderson inverse theorem (excluding pairwise addi-
tivity), and their long-standing role in studies of intermolec-
ular interactions makes them ideal candidates for examining
consistencies between classical and quantum models of inter-
atomic forces. To this aim, we deconstructed noble gas SOPR
potentials using classical parameterizations of atomic size and
dispersion energy and compared them to the atomic dipole po-
larizability. The atomic dipole polarizability was selected as
the variable quantity because it known to be closely related
to atomic size in quantum models of electron polarization37

and is present in the leading term of the dispersion energy
multipole expansion38. Empirical investigation of the atomic
size derived from SOPR potentials revealed that both colli-
sion diameter (the σ parameter in classical force fields) and
hard-particle diameter exhibit power law scaling that aligns
precisely with the quantum Drude oscillator model of elec-
tronic polarization. This result, to our knowledge, is the first
observation of quantum Drude oscillator type behavior in the
liquid state.

The empirically derived scaling laws were subsequently
used to predict force field parameters for noble gases out-
side the training set, specifically helium (He), radon (Rn), and
oganesson (Og). These predictions matched independently
optimized force fields up to the estimated uncertainty in the
pair potential reconstruction (excluding Og, for which no ex-
perimental data of liquid phase properties currently exists).
Notably, the excellent quantitative agreement with a Rn force
field optimized to critical point data39 is striking. This sug-
gests that SOPR can be leveraged to predict accurate force
field parameters that are fully consistent with quantum rep-
resentations of atomic dipole polarizability, despite being de-
rived within a purely classical framework. Moreover, this re-
sult provides a clear example of dimensionality reduction in
force field design, where the problem of developing classical
potentials can be reduced to computing a single parameter and
applying simple scaling relations learned from experimental

structure data. These results demonstrate that nonparametric
potentials derived from neutron scattering patterns not only
align with quantum mechanical theory but also have the poten-
tial to guide both classical and next-generation quantum me-
chanical force field development in subtle yet powerful ways.

II. THEORY AND COMPUTATIONAL METHODS

In practice the pairwise additive approximation has been
widely successful at modeling thermodynamic and dynamic
properties of liquid state systems at a comparatively low com-
putational cost. Under the additional assumption that the liq-
uid is isotropic, the two-body effective potential is uniquely
defined by the radial distribution function according to Hen-
derson’s inverse theorem23. This theorem can be shown to be
mathematically equivalent to the condition that for any point
ri ∈ R+

0 , the product of the difference in the effective pair po-
tential, ∆v2(ri), and radial distribution function, ∆g(ri), must
be non-positive,

∆v2(ri)∆g(ri)≤ 0 (1)

establishing a variational framework to refine a reference po-
tential to experimentally derived radial distribution functions.
The two-body potential derived from the experimental scatter-
ing data is therefore the unique potential that gives an equality
in eq 1.

A. Structure Optimized Potential Refinement

Structure optimized potential refinement (SOPR) is a prob-
abilistic iterative Boltzmann inversion algorithm designed to
learn effective two-body potentials from neutron/X-ray scat-
tering derived radial distribution functions34. Whereas most
IBI methods are used for coarse-grained simulations26, SOPR
is uniquely designed to handle experimental data. In a nut-
shell, SOPR takes as inputs a reference pair potential, vre f

2 ,
and experimentally derived radial distribution function, gexp,
and computes an effective pair potential, ve f f

2 , that reproduces
the given experimental data (Figure 1). This computation is
performed via iterative potential refinement, in which (1) a
molecular simulation using the given reference potential is
used to produce a simulated radial distribution function, gsim,
(2) the difference between the simulated and experimental ra-
dial distributions functions is calculated, ∆g= gsim−gexp, and
(3) the pointwise Henderson inverse theorem is applied to es-
timate an updated potential, vup′

2 , for the next iteration via a
refinement equation,

vup′
2 (r) = vre f

2 (ri)+ γ(ri)β
−1

∑
n

∆g(n)
′
(ri) (2)

where i is the radial index, n is the iteration number, β is the
inverse thermal energy (kBT )−1, and γ(ri) > 0 is an empiri-
cal scaling function used to dampen the potential correction.
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FIG. 1. General overview of the structure optimized potential refinement algorithm. The loop between the molecular simulation, potential
refinement equation, and GPR is always convergent to a unique potential for pairwise additive and isotropic systems according to Henderson’s
inverse theorem.

Note that eq (2) is just one refinement equation example that
satisfies eq (1) and modifications to this function can lead to
changes in convergence speed and stability.

At this stage, traditional IBI repeats steps (1)-(3) until the
simulated and experimental radial distribution functions con-
verge to each other (∆g < ξ ∀r). ξ ∈ R+ is a tolerance limit
and should be approximately equal to the noise in the target
RDF. However, SOPR introduces an additional machine learn-
ing step (4) Gaussian process regression (GPR) on the updated
potential. Conceptually, we are assuming that the updated po-
tential is a sample from a distribution of possible pair potential
functions that are approximately distributed as an infinite di-
mensional multivariate Gaussian over its input parameters,

vup′
2 ∼ N (µ(r),K(ri,r j)) (3)

where ri,r j are any pair of radial positions, µ(r) is a mean
function, and K(ri,r j) is a covariance function (or kernel) de-
scribing the relatedness of observations vup′

2 (ri) on vup′
2 (r j)

35.
The specification of the mean and kernel functions are where
we can enforce physics based knowledge such as continuity
and differentiability (i.e., smoothness) and long-range tail be-
havior (limr→∞ v(r) = 0). It is then a straightforward matrix
calculation to compute the most probable potential given the
iterative potential refinement estimate as,

vup
2 (r′) = KT

r′,r[Kr,r +σ
2
noiseI]−1vup′

2 (r) (4)

where vup
2 (r′) is the estimate for the structure-optimized po-

tential at iteration n, σ2
noise is the variance in the function re-

sulting from random noise, and Kr′,r is shorthand notation for
the kernel function. Generally, the σ2

noise hyperparameter can
be inferred using hierarchical Bayesian inference for each re-
gression step, but for our purposes it was sufficient to choose

a value of 0.01 to capture known noise levels observed dur-
ing refinement. The GPR step has been shown to reduce nu-
merical instability and enforce physically justified behavior in
the refined potentials, allowing SOPR to address well-known
problems with IBI such as artifacts associated with interme-
diate and long-range structural correlations and potential non-
uniqueness in heterogeneous systems (i.e., molecular liquids
and mixtures).

In this work, SOPR was applied to neutron scattering data
for four noble gas species (Ne, Ar, Kr, Xe)40–42 to learn non-
parametric potentials for subsequent analysis. The methodol-
ogy closely resembles that from our previous work34 but in-
cludes updated simulation details for HOOMD-Blue version
4.7.043. Details of the molecular simulation set-up, SOPR pa-
rameters (reference potentials, scaling function, convergence
tolerance, etc), mean and kernel selection for GP regression,
and validation of the resulting potentials can be found in the
Appendix.

B. Short Range Interactions: Atom Size Estimation

In classical force field design, the atomic size parameter,
often the "collision diameter" or σ , is used in empirical poten-
tials like the (12-6) Lennard-Jones (LJ) and (λ − 6) Mie po-
tentials. The collision diameter represents the repulsive core
of the atom, where Pauli exclusion causes strong repulsion. σ

is typically defined as the diameter where the pair potential
shifts from positive to negative at short range. Interestingly, σ

can vary significantly across different FFs (c.f. Madrid 201944

and CHARMM45), which can easily result in a poor quality
of fit to experimentally derived radial distribution functions.
For instance, it has been estimated that the uncertainty in the
σ parameter is less than 0.1 Å when using structure factor
measurements as an optimization target46. Consequently, two
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classical FFs with σ values differing by more than 0.1 Å are
likely to produce significantly different structure factor pre-
dictions, with at least one diverging notably from experiment.

The van der Waal (vdW) diameter is another important
quantity in quantum mechanical calculations that often ap-
pears in density functional theory (DFT)47. Specifically, the
vdW diameter is directly influential to the so-called "vdW
force" present in DFT functionals48. The standard definition
for the vdW diameter used today is the distance from the cen-
ter of an atom at which Pauli exclusion and London disper-
sion forces are balanced. In classical pair potential models,
this point occurs at the diameter where the force is zero, typ-
ically located at the bottom of the potential well. In DFT, the
exchange-correlation energy functional, which describes in-
teractions of many-particles in the standard Kohn-Sham DFT
method, includes vdW forces in an approximate manner48. By
directly computing nonparametric classical potentials from
experimental data, we can compare vdW diameter estimates
in many-body liquid-phase systems with those obtained from
quantum mechanical calculations. While the idea to learn
vdW diameters from scattering data dates back to the work
of Bondi49, to our knowledge, no attempts have been made so
far to estimate them using nonparametric potentials derived
from scattering.

Finally, for model developers interested in entropy driven
self-assembly50, the effective hard-particle diameter defines
particle size. Here the hard-particle diameter was deter-
mined using the Weeks-Chandler-Andersen (WCA) perturba-
tion theory51, in which the total potential, w(r), is separated
into two parts: a short-range repulsive reference, u0(r) and a
long-range attractive perturbation u(r),

w(r) = u0(r)+u(r). (5)

such that,

u0(r) =

{
w(r)+ ε if r < rε ,

0 otherwise.
(6)

u(r) =

{
−ε if r < rε ,

w(r) otherwise.
(7)

where ε is the pair potential well depth and rε is the radial
position corresponding to the potential energy ε . Eq (5) is
shown graphically in Figure 2(b) for the SOPR potential of
liquid neon.

Once the potentials are decomposed using the WCA sepa-
ration, an equivalent hard-particle diameter, dhp, can be esti-
mated from the repulsive part of the potential3,51,52 according
to the following equation,

dhp =
∫

∞

0
[1− exp(−βu0(r))]dr (8)

such that the integrand [1 − exp(−βu0(r))] is unity at low
r since exp(−βu0(r)) is negligibly small due to the y-
asymptotic behavior of u0(r). At longer range, u0(r) is zero

FIG. 2. WCA separation of the SOPR potential into a short-range
repulsive reference potential and long-range perturbation.

by definition, which sends the integrand to zero. Note that
this hard-particle diameter falls out of a second order approx-
imation of the functional Taylor expansion of the reduced ex-
cess free energy density, φ =−βFex/V , in powers of the blip
function, ∆e(r), defined as the difference between Boltzmann
factors of the short-range repulsive reference and a system of
equivalent hard spheres,

∆e(r) = exp(−βu0(r))− exp(−βud(r)) (9)

where ud(r) is an equivalent hard-particle reference potential.
A key strength for performing this analysis on SOPR poten-
tials is that the soft-core reference system, empirical hard-
particle size, and blip function can now be estimated directly
from experiments, allowing for comparisons between exper-
imentally inferred potentials and those derived from liquid
state theory.

The motivation for selecting these definitions of atomic size
to describe short-range interactions are three-fold. First, the
collision diameter, vdW diameter, and hard-particle diameter
are common parameters across a wide range of computational
models, covering classical FFs, DFT, and hard-particle Monte
Carlo, respectively. In effect, any relationships derived from
these three parameters will be widely applicable across nu-
merous fields of computational molecular science. Second,
we wanted to leverage the low computational cost of SOPR
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to see if certain size parameters follow known theoretical be-
haviors while others do not. Such an undertaking would be
far more expensive for existing ab initio methods due to the
large number of atomic clusters required to represent a liquid
phase. Finally, it is not known whether or not any trends exist
in empirical atomic size parameters like the collision diame-
ter and hard-particle diameter. Elucidating these relationships
could provide an experimentally validated FF design strategy
or be used as initial guess for optimization.

C. Long Range Interactions: Attractive Forces

The treatment of long-range interactions differs substan-
tially between classical and quantum mechanical models of
interatomic forces, complicating direct comparisons between
SOPR potentials and quantum models of dispersion interac-
tions. In this work, we approximate the classical dispersion
energy as the minimum energy of the SOPR pair potential,
equivalent to the ε parameter in the familiar Lennard-Jones
model, and perform linear regression on a power law relation
of the form, ε = aαb, where a,b∈R. As demonstrated later in
the manuscript, even this simplified approach reproduces the
ε parameter for Rn within the expected parametric uncertainty
of structure-derived potentials.

D. Atomic Dipole Polarizability and Quantum Drude
Oscillators

Atoms and molecules are electrically polarizable particles,
and their degree of polarization is well-known to correlate
with their effective size53. In condensed phases, where in-
teratomic interactions significantly impact the static and dy-
namic behavior of the system, electronic polarization effects
can become significant in response to the chemical environ-
ment. These effects are especially important in biomolecu-
lar systems where polarization is known to play a large role
in interactions between ions and proteins, lipids, and charged
amino acids. Therefore, there is currently a widespread effort
to incorporate electronic polarization models in classical FFs
using both explicit methods, such as fluctuating charge models
or classical drude oscillators54, and implicit mean-field elec-
tron continuum corrections (ECC)55–58.

Of the explicit models of electron polarization, the quan-
tum Drude oscillator (QDO) is emerging as a popular method
to describe electronic polarization from first principles59–61.
In the QDO model, the interaction between the electrons and
nucleus is represented as a harmonic term between a drudon
quasiparticle with charge −q and a classical quasinucleus
of charge +q. Each quasiparticle interacts with other par-
ticles in the system through Coulombic forces. In a spher-
ically symmetric QDO, polarizability can be calculated from
second-order perturbation theory by constructing a test charge
perturbed Hamiltonian and solving for the induced multi-
pole moments62. Of particular interest to the biomolecular
FF community is the construction of computationally effi-
cient two-body interatomic potentials consistent with QDO

models63.
Another benefit of the QDO model is its simple mathe-

matical structure, which makes it easy to derive relationships
between atomic properties64. For example, Federov et al.37

showed that the vdW diameter is related to atomic dipole po-
larizability via a power law,

RvdW ≈ aα
1/7 (10)

where α is polarizability and a ≈ 2.54 is a constant fit to
target vdW diameter data. It has been argued that this rela-
tion, which touts reasonably accurate predictions for 72 el-
ements, obviates the need to compute vdW diameters since
the atomic dipole polarizability is easily measured experimen-
tally with index of refraction or Rayleigh scattering probabil-
ity methods65–67 or computed68,69. Note that this relation dif-
fers from the classical drude oscillator (CDO) solution, which
scales with R ∝ α1/3.

These scaling laws provide a convenient consistency check
between SOPR potentials and quantum mechanical represen-
tations of electronic polarization. To this aim, we fit the QDO
power law scaling in eq (10) to SOPR estimated vdW diam-
eters, collision diameters, and hard-particle diameters to elu-
cidate whether or not the structure-derived potentials are con-
sistent with quantum mechanical behavior of electronic po-
larization. The resulting empirical QDO power relation was
then used to estimate collision diameters for the noble gases
He and Rn.

III. RESULTS AND DISCUSSION

Our methodology combines the following three steps: (1)
calculation of the σ parameter, vdW diameter, hard-particle
diameter, and dispersion energy from noble gas SOPR poten-
tials (2) linear regression of power law relations between these
parameters and atomic dipole polarizability, and (3) applica-
tion of the resulting relations to estimate σ and ε parameters
in noble gases outside of the training set. In a nutshell, the re-
sults show that the SOPR-QDO line derived solely from liquid
noble gas scattering data is quantitatively accurate at predict-
ing optimal σ and ε parameters for classical models of noble
gases.

A. Analysis of SOPR Potentials and QDO Scaling Laws

Radial distribution functions, SOPR potentials, hard-
particle integrands, and blip functions calculated from neutron
scattering data of Ne, Ar, Kr, and Xe are shown in Figure 3.
The excellent quality of fit to the experimental radial distri-
butions is expected according to the Henderson inverse theo-
rem. Also, the SOPR potentials themselves are well-behaved
in comparison to other IBI potentials derived from experimen-
tal data24,70. Figure 3 (c) shows the integrand of the Barker-
Henderson hard-particle equation after WCA separation of the
SOPR potential and (d) the blip function. The widening of the
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FIG. 3. SOPR analysis for Ne, Ar, Kr, and Xe at a single state point. (a) Experimentally derived radial distribution functions (markers)
compared to SOPR simulation RDFs (lines). (b) Converged SOPR potentials. (c) Integrand of the soft-core repulsive potential after after
Weeks-Chandler-Andersen separation with the Barker-Henderson hard-particle diameter approximation. (d) Neutron scattering derived blip
functions.

TABLE I. Summary of atomic size and dispersion energy parameters
determined from SOPR potentials. All lengths are given in units of
Å.

Element σ vdW dhp ε (kcal/mol) α (Å3)69

Ne 2.77 3.15 2.80 0.065 0.396
Ar 3.40 3.79 3.51 0.242 1.661
Kr 3.58 4.05 3.64 0.342 2.528
Xe 3.91 4.55 3.96 0.469 4.118

blip function with atom identity indicates a larger deviation
from hard-particle behavior, consistent with the progressively
larger and more polarizable electron clouds of Ne, Ar, Kr, and
Xe, respectively. Atomic vdW diameters, collision diameters,
and hard-particle diameters computed from the SOPR poten-
tials are provided in Table I.

A comparison between the SOPR potential atomic size pre-
dictions and atomic dipole polarizabilities is presented in Fig-
ure 4(a) while dispersion energy is presented in Figure 4(b).
Power law constants, a,b ∈ R, were computed using linear
least-squares regression to the equation, c = aαb. For the
atomic size predictions, the power law exponent, b, was fixed
to the QDO value of 1/7, whereas for the dispersion energy

b was treated as an unknown. The power law relations and
fitting parameters are recorded in Figure 4 (a-b).

Collision and hard-particle diameters show an excellent lin-
ear fit in the log-log plot, with a power law exponent of 1/7,
providing the first experimental evidence of QDO-like be-
havior experimental data in the liquid-state. In contrast, the
SOPR vdW diameter deviates from the prediction by Fedorov
et al.37 for liquid Xe, which is expected since the QDO rela-
tion, derived in vacuum, does not account for the many-body
interactions in the dense polarizable liquid. This discrepancy
underscores the limitations of naively applying QDO scaling
to classical force fields: while short-range interactions such
as collision and hard-particle diameters align with the QDO
model, the vdW diameter, influenced by many-body effects,
does not.

Furthermore, this deviation may reveal deeper complexities
in QDO behavior under liquid-state conditions. One possible
explanation is that the solution to the perturbed QDO Hamil-
tonian for many-body systems at liquid densities does not fol-
low a power law in atomic dipole polarizability, unlike the
symmetric single QDO with a test charge perturbation. In this
case, the SOPR vdW data may suggest the presence of another
term in the solution that grows faster than the ∝ α1/7 scaling,
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FIG. 4. Interatomic potential parameters derived from SOPR compared to a QDO power law (for atomic size) and variable power law relation
(for dispersion energy) in the noble gas series. (a) Empirical quantum Drude oscillator scaling law, D ∝ α1/7, (dashed lines) compared to
ab initio calculated vdW diameter (red diamonds) and neutron scattering derived vdW diameter (violet pentagons), effective hard particle
diameter (blue triangles) and interaction potential collision diameter (black circles). (b) Dispersion energy at the pair potential minimum vs
variable power law relation. (c-d) Extrapolation of QDO and variable power laws to atomic dipole polarizabilities of He and Rn parameters
with uncertainty estimation. Red markers represent independently optimized force field parameters.

with this non-power-law term manifesting at polarizabilities
between those of Kr and Xe.

Figure 4(c-d) compares empirical scaling relations with
classical force field parameters for He and Rn (red mark-
ers) with uncertainty quantification estimation (gray credi-
bility interval). Credibility intervals were calculated by real
unit scaling of the two standard deviation estimates on the
reduced LJ units (±0.02σ and ±0.1ε) reported in our re-
cent study on classical force field uncertainty propagated from
noisy scattering data46. This gives upper and lower credibility
interval bounds for the power law scaling relations of σint :
[3.097α1/7,3.223α1/7] and εint : [0.135α0.865,0.165α0.865].
Note that these uncertainty estimates assume that the scatter-
ing data has a baseline noise level of 0.005 or less out to 30
Å
−1

. Error bars for Rn were reported according to Mick et
al.39, but we speculate that the true uncertainty is larger due
to the multimodal nature of their likelihood function response
surface.

Table II presents noble gas σ and ε parameters estimated
using SOPR-derived scaling relations, compared with exist-
ing force fields. Percent error (%) is calculated in the usual

way, 100(xpred − xtrue)/xtrue, where xpred is the SOPR esti-
mated parameter and xtrue is the independently optimized pa-
rameter. The estimates show errors below 3.9% in all cases
except for He’s dispersion energy with a difference of 89%
from previously reported parameters71. This large error for
He is likely due to strong nuclear quantum effects present in
sub-critical liquid helium72. Speculative estimates for the pa-
rameters of liquid-phase Og are also included, though they
cannot be validated by thermodynamic predictions since Og
can only be synthesized one atom at a time73. Furthermore,
accurate modeling of Og’s interatomic forces requires consid-
ering relativistic effects via the Dirac equation74, suggesting
its properties may differ significantly from other noble gases.
Despite these challenges, the parameters presented offer a the-
oretical foundation for investigating liquid-phase Og until ex-
perimental data becomes available.

Our results reveal a clear connection between structure-
derived potentials and fundamental quantum mechanical the-
ories of interatomic forces and electronic polarization, chal-
lenging the traditional view that structure-derived poten-
tials are merely empirical representations of interatomic
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TABLE II. Estimated σ and ε parameters for the noble gas series using the QDO scaling relations. Deviations from previously reported force
field parameters are given in percent error.

Element σ (SOPR) σ Error (%) ε (SOPR) ε Error (%) α (Å3)
He 2.533 2.52471 0.4 0.039 0.02071 89 0.20867

Ne 2.768 2.79475 -0.9 0.065 0.06475 1.5 0.39669

Ar 3.393 3.40575 -0.4 0.242 0.24275 -0.1 1.66169

Kr 3.600 3.64575 -1.2 0.342 0.35075 -2.3 2.52869

Xe 3.858 3.96475 -2.7 0.469 0.48475 -3.1 4.11869

Rn 3.986 4.14539 -3.8 0.600 0.58039 3.4 4.96569

Og 4.297 - - 0.964 - - 8.59074

interactions14. Furthermore, structure based methods like
SOPR typically require only 10-20 classical MD simulations
to learn an effective pair potential, providing a low computa-
tional cost alternative to expensive quantum mechanical cal-
culations while being learned directly from experimental ob-
servation. Furthermore, SOPR potentials may provide an ex-
perimentally validated way to refine classical potential repre-
sentations within corresponding-states frameworks for classi-
cal and quantum fluids72.

Looking ahead, the physical insights gained from scatter-
ing analysis could play a key role in the design of biomolec-
ular FFs, where standardized methods and benchmarks for
interatomic interactions remain underdeveloped76. Develop-
ing FFs that can efficiently account for electronic polarization
continues to be an active area of research, with significant
implications for large-scale simulations of complex systems
like membranes and protein complexes. Our findings indi-
cate that structure refinement approaches may be well-suited
for learning effective pair interactions consistent with polar-
ization effects in liquid phases, potentially in less time than
it typically takes to train empirical force fields (which often
require hundreds or thousands of training simulations and the
use of machine learning surrogate models to navigate the pa-
rameter space). Lastly, scaling relations between the σ and
ε parameters of structure-based potentials and atomic dipole
polarization could provide valuable initial guesses for FF op-
timization or serve as a post hoc validation of physical consis-
tency with quantum theory.

IV. CONCLUSIONS

In summary, collision and hard-particle diameters inferred
from neutron scattering experiments in noble liquids were
found to follow a quantum Drude oscillator scaling law with
atomic dipole polarizabilities. This finding represents the first
experimental evidence of QDO-type behavior in the liquid
state. Additionally, the classical description of noble gas in-
teratomic forces was shown to depend essentially on a single
parameter: the atomic dipole polarizability. Empirical scaling
laws on the classical σ and ε parameters derived from SOPR
potentials were then shown to closely reproduce state-of-the-
art classical models of noble gases ranging from helium to
radon.

More broadly, the methodology presented in this work has
the potential to advance research on inferring interatomic po-

tentials from structural data. For many years, structure inver-
sion techniques have been regarded as unable to yield physi-
cally accurate representations of interatomic interactions. Ad-
ditionally, the focus on many-body and quantum mechanical
methods has caused interest in developing approaches for in-
vestigating classical pairwise representations of interatomic
forces to decline. Nevertheless, this study demonstrates that
nonparametric inference of interaction potentials from high-
resolution neutron scattering data can reveal subtle and com-
plex aspects of intermolecular forces. It also highlights why
machine learning interpretations of scattering experiments are
instrumental in this respect.
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Appendix A: Structure Optimized Potential Refinement
Settings and Molecular Dynamics Simulations

The molecular simulation corrector is a canonical (NV T )
molecular dynamics (MD) simulation performed in HOOMD-
Blue43. MD simulations were initiated with N = 2916 atoms
on a cubic lattice of initial length of 3∗N1/3 Å and performed
in the NVT ensemble using HOOMD’s native ConstantVol-
ume integrator and Nose-Hoover thermostat with a default
coupling constant of τ = 100δ t. The timestep, δ t, was chosen
to be 0.5 femtoseconds and pair potential interactions were
truncated at 3σ with analytical tail corrections. MD simu-
lations proceeded in four steps (1) thermalization of particle
momenta for 5000 timesteps, (2) box size ramping to the ex-
perimental density using the hoomd.variant.Ramp command
for 10,000 timesteps, (3) a 0.5 ns equilibration at the experi-
mental density, and (4) a 0.5 ns production run. Radial distri-
bution functions were calculated with Freud77 sampled at 100
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TABLE III. Reduced temperature (Tr = T/Tc) and atomic density
(ρ) are listed for the neutron scattering experimental conditions. 12-
6 Lennard-Jones potentials with parameters (σai,εai) were used as
reference potentials.

Element Tr ρ (1/Å3) σai (Å) εai (kcal/mol)
Ne 0.95 0.02477 2.76 0.122
Ar 0.56 0.02125 3.35 0.287
Kr 0.95 0.01187 3.58 0.582
Xe 0.95 0.00881 3.89 0.811

timestep intervals. Convergence is checked against the av-
erage squared error between the simulated and experimental
radial distribution function such that ⟨[∆g(n)(r)]2⟩< 5∗10−4,
which generally took 15-20 iterations at SOPR scaling con-
stant γ = 0.2.

The Gaussian process regression step used mean zero, µ =
0, and a squared-exponential kernel with width parameter,
w = 0.05 kcal/mol and length-scale parameter, ℓ= 1 Å. GPR
regression was initiated at 0.9σ which is well within the re-
gion of the potential that influences the MD. Experimental
neutron scattering data and SOPR reference potentials are the
same as the SOPR method paper34 and reproduced below in
Table III. Source code for SOPR is available on GitHub here.
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